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Appendix D
Design Example-Finite Element
Method

D-1. General

a. The design example problem described in
Appendix B was analyzed using the composite finite
element-equivalent mass system method. The analy-
sis was performed on a PC using the computer pro-
gram ALGOR-Finite Element Analysis System.

b. Definitions of symbols and notations used in
this appendix can be found in the Glossary. Refer to
Appendix B where the values of several parameters
used as input to the finite element program were
developed.

D-2. Computer Model

The computer model is shown in Figures D-1
and D-2. The general characteristics are as follows:

a. The dam/foundation is a 2-D representation
using the critical transverse cross section of the dam.
The geometry of the finite element mesh is estab-
lished by 156 node points.

b. The foundation effects are modeled using a
block of foundation with the width of the block equal
to 3 times the width of the dam base, and the height
of the block equal to 1.5 times the height of the dam.

c. The boundary conditions along the bottom
and both sides of the foundation block consist of
roller restraints of the node points establishing these
boundary lines.

d. Both the dam and the foundation block are
modeled with 2-D solid, isotropic, quadrilateral, plane
strain elements. The dam consists of 78 elements,
and the foundation block consists of 48 elements.
The nodes establishing the corners of the elements
have 2 degrees-of-freedom (Y and Z translations).

e. The material properties for the dam RCC and
the foundation block are given in Appendix B. The
density of the foundation block is set to zero so the
ground motion is transmitted to the dam-foundation
interface without modification.

f. The reservoir effects are modeled by devel-
oping an equivalent mass system which consists of
adding lumped masses to the nodal points at the
upstream face of the dam as shown in Figure D-1.
Procedure for determining the magnitude of the added
masses is given below.

D-3. Equivalent Mass System Representa-
tion of Reservoir Effects

a. This system models the hydrodynamic effects
by adding mass to the finite element model. It is
founded on the equations and techniques used by
Chopra in developing his simplified analysis method.
It is based on the fundamental mode, but since this
usually contributes 85 to 90 percent of the response,
it produces good results. The method accounts for
the compressibility of water and the interaction of the
water with the elastic structure and foundation. The
equations used in deriving the equivalent mass system
for finite element analysis are:

(D-1)f1
L̃1

M̃1

SA

g
(gm) (ψ1)

where

f1 = total lateral force per unit height acting at a
certain elevationincluding the hydrodynamic
contribution

m = equivalent mass system which consists of

m = mS + mHD (D-2)

where

mS = mass per unit height of concrete

mHD = mass per unit height which must be added to
account for the hydrodynamic effects

Ψ1 = fundamental mode shape normalized so the
crest of the dam has a unit deflection

(D-3)mHD

p
ψ1
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where

Figure D-1. Composite finite element-equivalent mass system model

p = the hydrodynamic pressure function deter-
mined by using Chopra’s standardized curves

of . This is discussed in detail later.
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(D-4)wS g(mS)

where

wS = weight per unit height of concrete

b. It is now possible to substitute Equations D-2
through D-4 into Equation D-1 which gives the basic
equation used in Chopra’s simplified method:

f1
L̃1

M̃1

SA

g
(wS ψ1 gp)

c. The above derivation shows that Chopra’s
simplified method is based on an “equivalent mass
system.” The added mass that accounts for the
hydrodynamic effects is represented bymHD in Equa-
tion D-3 above. This same added mass can be
included in a finite element model, and it will cause
the model to respond with a very good approximation
of the interaction of the compressible water on the
flexible structure/foundation system.

d. Chopra provides standardized curves of the
hydrodynamic pressure function . It should be


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noted that these curves are based on the full reservoir

Figure D-2. Zoom-in of finite element mesh at top of dam

condition whereH/Hs = 1. To correct the values
taken from the curves for other reservoir depths it is
necessary to multiply these values by the following
factor:
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where

p = hydrodynamic pressure function for a reser-
voir of depthH above the foundation

Then the added mass is calculated to be:

(D-5)
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p
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The finite element model requires the distributed
massm to be converted to lumped masses applied at
appropriate nodes on the upstream face of the model
as expressed by

Mn Ctr mHD

where

Mn = added lumped mass at a particular node

Ctr = the tributary area associated with a particular
node

mHD = the value of the distributed mass (mass per
unit height) at a particular node location

Equation D-5 is then rewriten as:
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(D-6)
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e. The Chopra curves for standardized pressure
function are based on the ratioRw which is defined
by the following equation:

(D-7)Rw

T r
1

T̃r

where

(D-8)T r
1

4H
C

Equations forTr will now be derived which are based
on terms that are determined by performing modal
analyses using the computer model described in para-
graph D-2 to extract the fundamental resonant period
for the first mode and the characteristic shape of the
first mode.

(D-9)T̃r RrT1

(D-10)T̃f RfT1

(D-11)T̃1 RrRfT1

By rearranging terms of Equations D-9 and D-10,
substituting into Equation D-11, and finally solving
for Tr results in the following:

(D-12)Tr

T̃1

T̃f

T1

Use of these equations is further discussed in the
procedure described below.

D-4. Procedure to Determine Added
Lumped Masses

The following is a step-by-step procedure to deter-
mine the lumped masses to be added at the upstream
node points to model the hydrodynamic effects:

Step 1. Perform the modal extraction phase of
the dynamic analysis to determine the fundamental
resonant periodT1 of the dam on a rigid foundation
with an empty reservoir. This requires modifying the
computer model described in paragraph D-2 by tem-
porarily fixing the nodes at the dam-foundation inter-
face to create the rigid foundation condition required
for this step only. This step is referred to ascom-
puter run #1, and requires extracting only the first
mode.

Step 2. CalculateH/Hs for the pool elevation of
interest, and use Figure D-3 to determine a value of
Rr. Then calculateT̃r using Equation D-9, and then
calculateRw using Equation D-7.

Step 3. With this value ofRw, use Figure D-4 to
obtain values of the standard hydrodynamic pressure
function (gp/wH) at the locations ofy/H that corre-
spond to the upstream node point elevations. Use the
Rw curve that is nearest the calculated value ofRw,
but on the conservative side. Note that the appropri-
ate value ofα, the wave reflection coefficient, was
calculated for the example problem in Appendix B.
To determine the correct values of (gp/wH) for this
value ofα, it will be necessary to interpolate between
the appropriate pair of graphs. These values of
(gp/wH) are used to develop the initial added mass
model (see Table D-1 for an example).

Step 4. Remove the temporary node point fixities
at the dam-foundation interface leaving the computer
model with the boundary conditions described in
paragraph D-2, and perform the modal extraction
phase of the dynamic analysis to determine the fun-
damental resonant period of the dam on its elastic
foundation with an empty reservoir,T̃f, and the corre-
sponding characteristic mode shape for the first mode.
This step is referred to ascomputer run #2, and
requires extracting only the first mode.

Step 5. Normalize the first mode shape from
computer run #2to a unit translation at the top of the
dam by dividing the appropriate node point transla-
tion values by the translation value of the node at the
top upstream corner of the dam. These are the values
of ψ1 for use in developing the initial added mass
model.

Step 6. Using these values ofψ1 and (gp/wH),
calculate the values ofMn using Equation D-6. Add
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Figure D-3. Initial values of Rr, the period lengthening ratio due to hydrodynamic effects
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Figure D-4. Standard values for the hydrodynamic pressure function p for full reservoir, i.e. H/Hs = 1;
α = 0.75 and 0.50
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these lumped masses to the computer model at the
appropriate upstream node points. This now becomes
the initial added mass model.

Step 7. Using the initial added mass model,
perform the modal extraction phase of the dynamic
analysis to determine the fundamental resonant period
of the dam,T̃1, on its elastic foundation with reservoir
of depthH, and the corresponding characteristic mode
shape for the first mode. This step is referred to as
computer run #3, and requires extracting only the
first mode.

Step 8. Normalize the first mode shape from
computer run #3to a unit translation at the top of the
dam by dividing the appropriate node point transla-
tion values by the translation value of the node at the
top upstream corner of the dam. These are the values
of ψ1 for use in developing the final added mass
model.

Step 9. Using the values ofT1 from computer
run #1, T̃f from computer run #2, andT̃1 from com-
puter run #3, calculateT̃r using Equation D-12. With
this value ofT̃r, calculateRw using Equation D-7.

Step 10. With the new value ofRw, use
Figure D-4 to obtain values of the standard hydrody-
namic pressure function (gp/wH) at the locations of
y/H that correspond to the upstream node point eleva-
tions. Use theRw curve that is nearest the calculated
value ofRw, but on the conservative side. The value
of α is the same as used in step 3. To determine the
correct values of (gp/wH) for this value ofα, it will
be necessary to interpolate between the appropriate
pair of graphs. These values of (gp/wH) are used to
develop the final added mass model (see Table D-1
for an example).

Step 11. Using the values ofψ1 from step 8, and
the values of (gp/wH) from step 10, calculate the
values ofMn using Equation D-6. Add these lumped
masses to the computer model at the appropriate
upstream node points. This completes the final equi-
valent mass system representation of the reservoir
effects for the reservoir of depthH.

D-5. Applying Added Lumped Mass Proce-
dure to the Example Problem

The added lumped mass procedure described in para-
graphs D-3 and D-4 will be applied to the example

problem. The normal pool condition associated with
the MCE will be used to demonstrate the procedure.
Determining the added lumped masses for the normal
pool condition associated with the OBE and for low
pool conditions is similar. The computer model as
described in paragraph D-2 is used in the modal
analyses mentioned below.

a. Initial added mass model.

H = 2445 - 1950 = 495 ft

T1
r = 4H/C = 4(495)/4720 = 0.4195 sec (D-8)

Hs = 2550 - 1950 = 600 ft

H/Hs = 495/600 = 0.825

T1 = 0.3882 sec fromcomputer run #1where the
nodes at the dam base-foundation interface
(nodes 56 through 62) of the composite dam/
foundation model are fixed to create the
condition of a dam on a rigid foundation.

ψ1 = the eigenvector (mode shape) for mode 1
from computer run #2which uses the com-
posite dam/foundation model with empty
reservoir. The lateral mode shape transla-
tions (y-direction) are taken from the mode
shape computer analysis output at the
upstream face node points shown in Fig-
ures D-1 and D-2, and are normalized to a
unit translation at the top of the dam (by
dividing each translation value by the trans-
lation output value for the node at the top
upstream corner). The normalized values are
entered in the appropriate column of
Table D-1 for the initial added mass model.

Rr = 1.10 from Figure D-3 (forH/Hs = 0.825),
which now allows the following to be
calculated:

(D-9)T̃r RrT1 1.10 (0.3882) 0.4270 sec

(D-10)Rw T r
1 / T̃r 0.4195/0.4270 0.982

(gp/wH) values are obtained from Figure D-4 for the
values ofy/H that correspond to the upstream node
point elevations shown in Figure D-1. The curve
lines for Rw = 0.95 are used since they are nearest

D-7



EP 1110-2-12
30 Sep 95

D-8



EP 1110-2-12
30 Sep 95

the calculated value ofRw = 0.982 (on the conserva-
tive side), and the plots forα = 0.5 and 0.75 are
interpolated to give the values of (gp/wH) for the
calculated value ofα = 0.69. Values of (gp/wH) are
entered in Table D-1 for the initial added mass
model.

Mn = the lumped masses to be added to the
upstream node points which are calculated
using the following:

(D-6)Mn [ (wH/g) (H /Hs)2] (Ctr /ψ1) (gp/wH)

where

(wH/g) (H /Hs)2 (0.0624 × 495 / 32.2) (0.825)2

0.653

and

Mn 0.653 (Ctr /ψ1) (gp/wH)

b. Final added mass model.

T̃f = 0.5188 sec fromcomputer run #2which uses
the composite dam/foundation model with
empty reservoir.

T̃1 = 0.5638 sec fromcomputer run #3using the
composite dam/foundation model with the
added lumped masses at the upstream face
which represent the hydrodynamic effects of
the reservoir as calculated for theInitial
Added Mass Model.

(D-12)T̃r T̃1T1/ T̃f 0.5638 (0.3882) /0.5188

0.4219 sec

(D-7)Rw 0.4195/0.4219 0.994

ψ1 = the eigenvector (mode shape) for mode-1
from computer run #3which uses the com-
posite dam/foundation model with lumped
masses from the initial added mass model to
represent the hydrodynamic effects of the
reservoir. The lateral mode shape transla-
tions (y-direction) are taken from the mode
shape computer analysis output at the

upstream face node points, and are normal-
ized to a unit translation at the top of the
dam (by dividing each translation value by
the translation output value for the node at
the top upstream corner).

(gp/wH) values are obtained from Figure D-4 for the
values ofy/H that correspond to the
upstream node point elevations shown in
Figure D-1. The curve lines forRw = 1.0 are
used since they are so close to the calculated
value ofRw = 0.994, and the plots forα
= 0.5 and 0.75 are interpolated to give the
values of (gp/wH) for the calculated value of
α = 0.69.

Mn = the lumped masses to be added to the
upstream node points and are calculated
using the following:

(D-6)Mn [ (wH/g) (H /Hs)2 ] (Ctr /ψ1) (gp/wH)

where

(wH/g) (H/Hs)2 = (0.0624 × 495/32.2) (0.825)2 =
0.653

and

Mn = 0.653 (Ctr/ψ1) (gp/wH)

The initial lumped mass model is then modified by
replacing the lumped masses that were added to the
upstream nodes with these new lumped mass values
thus creating the final added mass model for the
MCE high pool condition.

D-6. Effective Damping Factor

Since the dam, foundation, and reservoir respond
together as a system to ground motion, the damping
contribution of each component must be considered
when developing the effective damping factor. As
with the equivalent mass system, Chopra’s equations
and curves for his simplified analysis method may be
utilized in the finite element approach. The equation
for the effective damping factor is

(D-13)ε̃1

1
Rr

1

(Rf )
3

ε1 ε r ε f

D-9
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Figure D-6. Values for εf , the added damping
ratio due to dam-foundation rock interaction

where

ε̃1 = the effective damping factor

ε1 = 5.0% for the OBE

ε1 = 7.0% for the MCE

εr is taken from Figure D-5

εf is taken from Figure D-6

and

Rf = T̃f /T1 (D-14)

Rr = T̃1/Tf (D-15)

D-7. Procedure to Determine the Effective
Damping Factor

a. Using the final added mass model, perform
the modal extraction phase of the dynamic analysis to
determine the fundamental resonant period of the

dam,T̃1, on its elastic foundation with reservoir of
depthH. This is computer run #4.

b. Using the value ofT1 from computer run #1,
T̃f from computer run #2, andT̃1 from computer
run #4, calculateRf using Equation D-14, andRr

using Equation D-15.

c. Determine the value ofεr from Figure D-5
interpolating between the appropriate curve lines for
the required value ofα, and between the appropriate
pair of graphs for the required value ofEs. Note that
the appropriate value ofα, the wave reflection coeffi-
cient, andEs, the seismic modulus of elasticity, were
calculated for the example problem in Appendix B.

d. Determine the value ofεf from Figure D-6.
If the constant hysteretic damping factor for the foun-
dation is not known, assumenf = 0.10.

e. Calculate the effective damping factor using
Equation D-13.

D-8. Applying Damping Factor Procedure
to the Example Problem

The procedure for determining the effective damping
factor will be applied to the example problem. The
high pool condition associated with the MCE, and the
conservation pool (low pool) condition for the MCE
will be used to demonstrate the procedure.

T1 = 0.3882 sec fromcomputer run #1

T̃f = 0.5188 sec fromcomputer run #2

T̃1 = 0.5575 sec (normal pool for MCE) from
computer run #4

T̃1 = 0.5208 sec (low pool for MCE) fromcom-
puter run #4

Rf = T̃f /T1 = 0.5188/0.3882 = 1.3364
(Equation D-14)

Rr = T̃1/Tf = 0.5575/0.5188 = 1.075 (normal pool
for MCE, Equation D-15)

Rr = T̃1/Tf = 0.5208/0.5188 = 1.003 (low pool for
MCE, Equation D-15)
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H = 2550 - 1950 = 600 ft

Hs = 2445 - 1950 = 495 ft (normal pool for MCE),
andH/Hs = 0.825

Hs = 2220 - 1950 = 270 ft (low pool for MCE),
andH/Hs = 0.450

α = 0.69,Es = 3590 ksi, andEf = 3500 ksi as
calculated in Appendix B

εr = 0.0158 (normal pool for MCE) from Fig-
ure D-5 forH/Hs = 0.825, interpolating
between theα = 0.50 and 0.75 curve lines
for the required value ofα = 0.69, and also
interpolating between the graphs ofEs =
3.5 million psi and 4 million psi for the
required value ofEs = 3590 ksi

εr = 0.0 (low pool for MCE). WhenH/Hs < 0.5,
εr = 0.0

εf = 0.0703 from Figure D-6 forEs/Ef = 3590/
3500 = 1.025, and an assumed value ofnf =
0.10

ε1 = 7.0 percent

ε̃1 = (1/1.075)(1/(1.3364)3)(7.0) + 100(0.0158) +
100(0.0703) = 11.34 percent (normal pool for
MCE, using Equation D-13)

ε̃1 = (1/1.003)(1/(1.3364)3)(7.0) + 100(0.0) +
100(0.0703) = 9.95 percent (low pool for
MCE, using Equation D-13)

D-9. Design Response Spectra

As discussed in Appendix B, the conditions for this
example problem require a site-specific design
response spectra. However, since this is only for the
purpose of demonstrating the finite element method,
the standard design response spectra shown in
Figure 5-1 and Table 5-1 will be assumed to be the
site-specific design response spectra.

a. Normalized design response spectra.The
design response spectra normalized to a PGA = 1.0 g
is calculated as follows:

T̃1 = 0.5575 sec for the MCE normal pool

T̃1 = 0.5208 sec for the MCE low pool

The design response spectra needs to be defined only
for values of the periodT up to the above values
of T̃1.

β = ε̃1 = 11.34% normal pool for MCE

β = ε̃1 = 9.95% low pool for MCE

K2 = 1.466 - 0.2895ln(11.34) = 0.76300 normal
pool for MCE

K2 = 1.466 - 0.2895ln(9.95) = 0.80085 low pool
for MCE

K3 = log(2.5 × 0.76300) = 0.28046 normal pool
for MCE

K3 = log(2.5 × 0.80085) = 0.30149 low pool for
MCE

Sa = spectral acceleration for period =T

Sa = 10.0K1K3 for T < 0.400

Sa = K2Sa(5%) for T > 0.400

b. Scaling factors-horizontal component of
ground motion. The above normalized design spectra
are scaled according to the scaling factors in
Table 5-2. The site is located in seismic Zone 3;
therefore, the scaling factors for the horizontal com-
ponent of ground motion = PGA = the following:

OBE: 0.210 g

MCE: 0.550 g

c. Design response spectra for the vertical
component of ground motion.In accordance with the
requirements of paragraph 5-6, independent vertical
component site-specific design response spectra are
required for the example problem. However, for
demonstration purposes, the standard design response
spectra normalized to a PGA = 1.0 g as described
above will be assumed to also be the vertical compo-
nent site-specific design response spectra. The scal-
ing factors for the vertical component of ground
motion will be based on Figure 5-3 as follows:
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T = period
(sec)

Sa(5%)

(g’s) K1

Sa

MCE Normal
Pool (g’s)

Sa

MCE Low
Pool (g’s)

0.002
0.010
0.020
0.040
0.060
0.080
0.100
0.120
0.150
0.400
0.450
0.500
0.550
0.600

1.0000
1.0000
1.2643
1.5985
1.8335
2.0210
2.1795
2.3182
2.5000
2.5000
2.2222
2.0000
1.8182
1.6667

0.00000
0.00000
0.25596
0.51192
0.66164
0.76787
0.85028
0.97160
1.00000
1.00000

1.0000
1.0000
1.1797
1.3918
1.5331
1.6419
1.7317
1.8728
1.9075
1.9075
1.6955
1.5260
1.3873
1.2717

1.0000
1.0000
1.1945
1.4267
1.5830
1.7041
1.8045
1.9630
2.0021
2.0021
1.7796
1.6017
1.4561
1.3348

R = source to site distance = 35 km (see
Appendix B)

T̃1 = 0.5577 sec for the MCE normal pool

T̃1 = 0.5208 sec for the MCE low pool

Based on these data, the ratio of (PGA of vertical
component)/(PGA of horizontal component) = 0.5.
Therefore, the scaling factors for the vertical compo-
nent of ground motion are

OBE = 0.5 × 0.210 = 0.105 g

MCE = 0.5 × 0.550 = 0.275 g

D-10. Response to Ground Motion

The procedure has now progressed to the point where
it is possible to determine the dynamic response to
the ground motion associated with the design earth-
quakes (the OBE and the MCE). For demonstration
purposes the example problem is considering only the
MCE; however, determining the response for the
OBE would follow the same procedure. A summary
of the work steps completed thus far is as follows:

Step 1. The computer model of the dam/founda-
tion system has been formulated.

Step 2. Two critical earthquake load cases for
the MCE have been identified, one combining the
design earthquake with the normal pool condition
which is considered reasonable at the time of the
MCE event, and the second load case combining the
design earthquake with the lowest possible pool at the
time of the MCE event (the conservation pool).

Step 3. The hydrodynamic effects of these two
pool elevations have been determined in terms of
added lumped mass attached to the upstream face at
appropriate node points. Thus the single computer
model of step 1 becomes two added mass computer
models, one for the normal pool load case and one
for the low pool case.

Step 4. The effective damping factors for the
combined dam/foundation/reservoir system have been
determined for both the normal pool and low pool
load cases.

Step 5. The design response spectra have been
developed for the two effective damping factors.

a. Modal analysis.

(1) The next step in the procedure is to perform
the final, complete modal analysis. This computer
run will extract all the modes which will make a
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significant contribution to the response. This requires
some judgment, but 10 modes normally suffice for
the typical gravity dam cross section like that of the
example problem. Therefore, the first 10 modes will
be extracted and the modal participation factors for
these 10 modes will be examined to ensure adequate
precision in the response spectrum analysis to follow.

(2) The modal participation factors are a func-
tion of the mode shape and the mass distribution.
They are not influenced at all by ground motion as
expressed by the response spectrum. They only give
an indication of the energy absorbing capability of a
particular mode. Along with the participation factors,
the response spectrum also has an obvious effect on
the response (deflection, stress .... etc.). Thus, the
contribution for a given mode is not directly propor-
tional to the participation factor. However, the partic-
ipation factor can be used for the purpose of judging
a reasonable cutoff point where higher modes would
not contribute significantly to the total response based
on a reasonable precision for the analysis.

(3) The modal participation factors for the first
10 modes produced by both the added mass computer
models are given in the accompanying tabulation.

(4) The tabulations of modal participation factors
indicate that the fundamental mode for the horizontal
(y-direction) component of ground motion is mode 1.
It is also apparent that for the horizontal component
of ground motion, mode 7 through mode 10 have par-
ticipation factors no greater than 1/14th of the partici-
pation factor for mode 1. Therefore, it is judged that
modes 1 through 6 would have been adequate for the
analysis for the horizontal component of ground
motion. The fundamental mode for the vertical
(z-direction) component of ground motion is mode 2.
For this component, mode 6 through mode 10 have
participation factors no greater than 1/16th of the
participation factor for mode 2. Therefore, it is
judged that modes 1 through 5 would have been
adequate to determine the response for the vertical
component of ground motion. On this basis, it is
concluded that for the example problem, the

MCE Normal Pool Load Case
1**** Modal Participation Factors

Mode X-Direction Y-Direction Z-Direction period (sec)

1 0.0000E+00 2.4886E+01 4.7916E+00 5.5753E-01
2 0.0000E+00 1.1126E+01 -2.4501E+01 2.8220E-01
3 0.0000E+00 -1.2864E+01 -1.0706E+01 2.4083E-01
4 0.0000E+00 -6.8721E+00 -2.0829E+00 1.4334E-01
5 0.0000E+00 8.3296E-01 4.3875E+00 1.0627E-01
6 0.0000E+00 3.2880E+00 -3.8116E-01 9.7209E-02
7 0.0000E+00 -1.5844E+00 1.4926E+00 8.9524E-02
8 0.0000E+00 -1.3661E+00 9.1764E-02 8.0562E-02
9 0.0000E+00 1.7230E+00 -2.4378E-02 7.6114E-02
10 0.0000E+00 -9.1725E-01 1.1421E-01 7.0581E-02

MCE Low Pool Load Case
1**** Modal Participation Factors

Mode X-Direction Y-Direction Z-Direction period (sec)

1 0.0000E+00 2.2133E+01 5.4826E+00 5.2080E-01
2 0.0000E+00 9.0977E+00 -2.5568E+01 2.7845E-01
3 0.0000E+00 1.3024E+00 7.4132E+00 2.2800E-01
4 0.0000E+00 -6.4719E+00 -2.5863E+00 1.3591E-01
5 0.0000E+00 2.8372E-01 -4.3314E+00 1.0239E-01
6 0.0000E+00 3.3446E+00 -5.1985E-01 9.1338E-02
7 0.0000E+00 -5.1590E-02 -4.2117E-01 7.9362E-02
8 0.0000E+00 -7.3791E-01 -1.9763E-01 7.1327E-02
9 0.0000E+00 -1.5412E+00 -9.8779E-01 6.4530E-02
10 0.0000E+00 9.7924E-01 -1.3636E+00 6.2772E-02
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response spectrum analysis using the first 10 modes
of vibration for both load cases will produce the
dynamic response well within the required precision.

(5) Figure D-7 shows the results of the modal
analysis in the form of the mode shapes for the first
six modes which were extracted from the equivalent
mass system model for the normal pool. The low
pool mode shapes are similar to these.

b. Response spectrum analysis.

(1) With the significant mode shapes and fre-
quencies extracted, the design response spectrum
developed in paragraph D-9 is introduced into the
dynamic analysis. For each significant mode, the
modal analysis produced the normalized mode shape,
the natural period or frequency, and the participation
factor for each ground motion component direction.
The spectral ordinate corresponding to the period or
frequency of each mode is the only additional param-
eter required to determine the maximum response for
each mode for each ground motion component direc-
tion. The procedure is simple. A mode coefficient is
calculated as a function of the participation factor and
the spectral ordinate, and the maximum modal
response, in terms of the deflected shape, is simply
the mode coefficient times the normalized mode
shape. The maximum modal stresses are then com-
puted once the displaced shape is known.

(2) For each mode and for each ground motion
component direction, there is a complete set of stres-
ses. Therefore, the example problem has 20 complete
sets of maximum modal stresses for each earthquake
load case. The final phase of the dynamic analysis is
to combine these 20 sets of stresses into a single set
of stresses representing the maximum dynamic
response to the design earthquake for that earthquake
load case. This phase of analysis can be subdivided
into two steps as follows:

Step 1. Combine each set of 10 maximum modal
stresses to produce the maximum component response
for each of the two ground motion component
directions.

Step 2. Combine the two maximum component
responses for each of the two ground motion compo-
nent directions to give the final maximum dynamic
response.

(3) For the example problem, paragraph 7-7e
requires that the maximum modal stresses (step 1
above) be combined using the complete quadratic
combination (CQC) method. Unfortunately, the
ALGOR Finite Element program does not provide the
CQC option; however, it does provide the ten percent
method (TPM) discussed in paragraph 7-7d. Similar
to the CQC, the TPM will give additional accounting
to modes with nearly the same frequencies. It is
noted from the above tables, the first 5 or 6 modal
frequencies are well separated, so it is unlikely that
there would be significant difference in the results
produced by CQC or TPM for this example problem.
Therefore, each set of 10 maximum modal stresses
will be combined by the TPM to produce the maxi-
mum component response for the Y-direction ground
motion component and the Z-direction ground motion
component.

(4) Referring to paragraph 7-8e, the maximum
component responses are to be combined by the
square root of the sum of the squares method (SRSS)
to produce the final maximum dynamic response.

D-11. Results of the Response Spectra
Dynamic Analyses

a. As discussed in Chapters 4 and 5 of this EP,
an acceptable response to the design earthquakes is
based on satisfying allowable tensile stress criteria to
prevent or control the extent of concrete cracking.
Two different allowable tensile stresses were estab-
lished, one for the parent RCC, and a lesser allowable
for the lift joints. It is also noted that there are two
allowables for the OBE, and two greater allowables
for the MCE.

b. Based on the acceptance criteria stated above,
it is necessary to determine the maximum principal
tensile stress at critical node points of the computer
model to determine if the design satisfies the allow-
able tensile stress for the parent RCC. It should be
noted that the response spectrum analysis first pro-
duces the maximum modal stresses that occur at the
node points, and these stresses are broken down into
their component stresses in the global coordinate
system. The ALGOR computer program uses these
component stresses for each mode to calculate the
principal tensile stress for that mode (at each node
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Figure D-7. Results of modal analysis-mode shapes 1 through 6 from composite finite element-equivalent
mass system model for the MCE normal pool load case
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point), and it then combines these individual mode
principal tensile stresses by the requested modal
combination method (the 10 percent method was used
for the example problem) to produce the maximum
principal tensile stress at each node. However, the
orientation (or direction) of the principal stress vector
is different for each mode, so the combined maxi-
mum principal tensile stress is not theoretically cor-
rect, but in most instances it can be considered to be
a reasonably conservative estimate. In contrast to this
method, other computer programs will first combine
the component stresses for each mode using the
requested modal combination method, and then calcu-
late the principal tensile stress from the combined
component stresses. The problem with this method is
that the signs of the component stresses are lost in
the combination process because all of the combina-
tion methods involve taking square roots of the sums
of the squares. Again, the maximum principal tensile
stress calculated from the combined (and always non-
negative) component stresses is not theoretically
correct, but in most instances it produces a reasonably
conservative estimate.

c. Based on the acceptance criteria stated ear-
lier, it is also necessary to determine the maximum
tensile stress normal to the plane of the horizontal lift
joints to determine if the design satisfies the allow-
able tensile stress for the lift joints. For the computer
models used in the dynamic analyses, this represents
the component stress vector in the global-Z direction.
It is noted that the problems associated with the prin-
cipal tensile stress calculation are not inherent in
combining the Z-direction component stress vectors
for each of the modes using the required modal com-
bination method. Thus, the combined Z-direction
component stress vector at each node point correctly
represents the maximum tensile stress normal to the
lift joint at that node.

d. The maximum principal tensile stresses occur
near the upstream and downstream faces of the dam
in much the same manner as the maximum stresses in
a beam in flexure occur at the extreme fibers of the
cross section. It is also noted that the direction of the
maximum principal tensile stresses near the upstream
and downstream faces, for a typical dam cross sec-
tion, is approximately parallel to the upstream and
downstream faces, respectively. Therefore, the differ-
ence between the maximum principal tensile stress at
the typically near vertical upstream face and the
maximum tensile stress normal to the lift joints at the
upstream face is small. Thus, the stresses normal to

the lift joints will govern along the upstream face
since the allowable tensile stress normal to the lift
joints is considerably less than the allowable tensile
stress for the parent concrete. Figure D-8 presents
graphically the stress contours of the maximum ten-
sile stresses normal to the lift joints for both MCE
load cases. It is noted that these results represent
only the dynamic response to the ground motion
shaking. Static stresses such as the dead load weight
of the dam or the hydrostatic load acting against the
upstream face are not included in these results.

e. Since the direction of the maximum principal
tensile stresses near the sloping downstream face is
approximately parallel to the face, it is more difficult
to predict whether the tensile stresses normal to the
lift joints or the principal tensile stresses in the parent
concrete will be critical. Therefore, both sets of
stresses must be determined along the downstream
face. Figure D-9 shows graphically the stress con-
tours of the maximum principal tensile stresses that
will occur near the downstream face of the dam for
both MCE load cases. Note that these maximum
principal tensile stresses occur during that part of the
oscillation cycle when the top of the dam is translat-
ing upstream. It is noted that these results represent
only the dynamic response to the ground motion
shaking. Static stresses such as the dead load weight
of the dam or the hydrostatic load acting against the
upstream face are not included in these results.

D-12. Static Analyses

a. To complete the dynamic analyses for each
earthquake load case, it is necessary to determine the
static state condition of the RCC dam at the time of
the design earthquake event. For the design example
the static loads acting on the dam at the time of the
earthquake are:

(1) Dead load weight of the RCC.

(2) Hydrostatic pressure of the reservoir against
the upstream face of the dam.

b. By activating the minus Z-direction gravita-
tional element load option in the ALGOR computer
program, the dead weight of the elements is internally
computed and distributed to the element corner node
points. The hydrostatic loading was calculated as
concentrated Y-direction forces acting on the
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Figure D-8. Results of response spectrum analysis-dynamic response to combined horizontal and vertical
components of ground motion for MCE load cases--expressed as maximum tensile stresses normal to the
lift joints
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Figure D-9. Results of response spectrum analysis-dynamic response to combined horizontal and vertical
components of ground motion for MCE load cases--expressed as maximum principal tensile stresses.
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appropriate upstream face node points. Figure D-10
shows the calculations for the hydrostatic load.

Figure D-10. Computation sheet to determine the
forces to apply to the upstream node points to
represent the hydrostatic pressure of the pool

c. With these loads applied to the computer
model, a static finite element analysis was executed
to determine the static stresses. The static stresses
normal to the lift joints for both the high pool and
low pool conditions are shown graphically in
Figure D-11, and the principal static stresses are
shown in Figure D-12.

D-13. Allowable Tensile Stress

Appendix B established the direct tensile strength of
the basic RCC mix to be:

f ′t = 290 psi (for the parent concrete)

f ′t = 205 psi (for the lift joints)

Because of the high strain rates associated with a
seismic event, the dynamic tensile strength is greater
than the direct tensile strength obtained from the lab
tests:

DTS = 1.5f ′t = 1.5 x 290 = 435 psi (for the parent
concrete)

DTS = 1.5f ′t = 1.5 x 205 = 307 psi (for the lift
joints)

In accordance with paragraph 4-2c, the allowable
tensile stress for a new RCC dam in seismic zone 3
for the OBE load condition is:

ft(allowable) = 0.90 × 435 = 392 psi (for the parent
concrete)

ft(allowable) = 0.90 × 307 = 276 psi (for the lift joints)

and in accordance wih paragraph 4-3c, the allowable
tensile stress for the MCE load condition is:

ft(allowable) = 1.33 × 435 = 579 psi (for the parent
concrete)

ft(allowable) = 1.33 × 307 = 408 psi (for the lift joints)

D-14. Critical Tensile Stresses for the Earth-
quake Load Cases

a. The critical tensile stresses are obtained by
adding the dynamic response tensile stresses with the
static stresses at the node points along the upstream
and downstream faces of the dam. These tensile
stresses are then compared to the allowable tensile
stresses to determine the acceptability of the design.

b. The following tabulations show the critical
tensile stresses for the MCE. Also shown in bold
print are the locations where the critical tensile stress
exceeds the allowable tensile stress along with the
percent overstress for these locations.
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Static Stresses Normal to the Lift Joints (KSF, tension is +) -
MCE Normal Pool Load Case

Static Stresses Normal to the Lift Joints (KSF, tension is +), -
MCE Low Pool Load Case

Figure D-11. Static stresses normal to the lift joints - MCE load cases

D-21



EP 1110-2-12
30 Sep 95

Figure D-12. Principal static stresses - MCE load cases

D-22



EP 1110-2-12
30 Sep 95

MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Stress Normal to the Lift Joint
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent
Overstressed

143
129
115
108
101
94
87
80
73
66
56

12.52
53.23
57.06
65.15
76.27
84.29
95.30

108.1
122.2
161.9
113.8

-1.55
-5.32

-11.40
-15.97
-21.66
-27.39
-35.14
-45.25
-59.42
-78.37
-49.16

76
333
317
342
379
395
418
436
436
580
449

-----
-----
-----
-----
-----
-----
2
7
7

42
10

MCE Low Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Stress Normal to the Lift Joint
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent
Overstressed

143
129
115
108
101
94
87
80
73
66
56

13.35
56.84
59.98
68.03
80.83
88.26
96.68

106.8
118.3
154.8
108.3

-1.55
-5.31

-11.55
-16.50
-22.25
-28.60
-37.15
-49.09
-68.30

-101.3
-71.84

82
358
336
358
407
414
413
401
347
372
253

-----
-----
-----
-----
-----
1
1

-----
-----
-----
-----
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Stress Normal to the Lift Joint
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent Over-
stressed

149
135
121
114
107
100
93
86
79
72
62

7.82
76.70
39.77
49.12
59.55
67.83
75.12
79.57
77.45
79.95
43.39

-1.53
-2.77
0.16
0.54
0.19

-2.28
-8.04

-16.28
-25.06
-33.68
-24.10

44
513
277
345
415
455
466
440
364
321
134

-----
26
-----
-----
2

12
14
8

-----
-----
-----

MCE Low Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Stress Normal to the Lift Joint
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent Over-
stressed

149
135
121
114
107
100
93
86
79
72
62

8.56
82.49
42.66
51.86
61.14
67.41
72.58
75.68
73.05
74.98
40.63

-1.53
-2.72
-0.02
0.06
0.64
1.21
0.28

-3.44
-9.58

-15.40
-13.79

49
554
296
361
429
477
506
502
441
414
186

-----
26
-----
-----
5

17
24
23
8
1

-----
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MCE Normal Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Principal Tensile Stress
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent Over-
stressed

149
135
121
114
107
100
93
86
79
72
62

7.82
76.70
60.24
74.68
89.66

103.7
120.8
126.0
121.4
121.7
91.63

-1.53
-2.77
-1.75
-2.09
-2.90
-6.19

-13.69
-26.38
-40.07
-52.48
-46.83

44
513
406
504
602
677
744
692
564
481
311

-----
-----
-----
-----
4

17
28
20
-----
-----
-----

MCE Low Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Principal Tensile Stress
(ksf, tension is +)

Node
No.

Dynamic
Response

Static
Stress

Critical Tensile
Stress (psi)

Percent Over-
stressed

149
135
121
114
107
100
93
86
79
72
62

8.56
82.49
48.86
60.06
71.20
84.48

103.4
112.2
111.8
113.5
85.91

-1.53
-2.72
-1.84
-1.70
-1.36
-1.89
-4.51
-8.29

-14.80
-23.74
-24.10

49
554
326
405
485
574
687
722
674
623
429

-----
-----
-----
-----
-----
-----
19
25
16
8

-----

D-15. Conclusions and Recommendations

a. The critical tensile stresses shown in para-
graph D-14b indicate certain areas or zones where
superior RCC mixes are required so the RCC dam

can be made to satisfy the earthquake resistant design
criteria for new dams as established by this EP.
Figure D-13 shows the zones that require RCC mixes
with higher tensile capacity than the basic RCC mix
with f ′c of 3,000 psi.
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Figure D-13. Zones exceeding the allowable tensile stress for the basic RCC mix
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b. The final step of the earthquake resistant
design procedure would be to develop some higher
strength RCC mix designs. Once the lab and field
placement tests have been completed for these super-
ior mixes, and their material properties established,
the computer model shown in Figures D-1 and D-2
would be adjusted to reflect the zones of superior
RCC. The dynamic analysis would be performed
with the new computer model following the same
procedure demonstrated above. If continued design
upgrade attempts fail to meet the acceptability
requirements, a more refined time-history analysis
may be used to gain more insight regarding the
dynamic response.

D-16. Comparing Response From Different
Analysis Methods

a. Differences and similarities of attributes.In
this appendix the design example problem was ana-
lyzed with the composite finite element-equivalent
mass system method using a general purpose finite
element program as discussed in paragraph 8-2c. In
Appendix C, the same design example problem was
analyzed using Chopra’s simplified method as
described in paragraph 8-2a. A comparison will now
be made of the results produced by the two different
methods of analysis. The earthquake loads for the
normal reservoir condition will be used for the com-
parison. Referring to the attributes of dynamic analy-
sis methods described in paragraph 8-1, the attribute
differences and similarities for the two methods are:

(1) Material behavior - both methods used linear
elastic material behavior. Material properties are
identical for the two methods.

(2) Design earthquake definition - both methods
used a design response spectrum to define the free
field ground motion for the design earthquakes. Both
methods anchored the design spectrum using the same
PGA of 0.550 g.

(a) Differences in effective damping affect the
response. The composite finite element method used
a damping factor of 11.34 percent, and Chopra’s
method used a damping factor of 12.33 percent.
Since damping in the response spectrum analysis is
reflected in the spectral shape, the slightly higher
damping in the Chopra analysis results in a slightly
smaller response compared to the response produced
by the composite finite element method.

(b) Another parameter associated with defining
the design earthquake is whether both horizontal and
vertical components of ground motion are specified or
if only the horizontal component is specified. The
composite finite element method used both horizon-
tal and vertical components of ground motion.
Chopra’s simplified method is capable of only analyz-
ing for the horizontal component of ground motion.
As discussed in paragraph 7-8, the vertical component
of ground motion can have significant effect on the
response.

(3) Dimensional representation of project condi-
tions - both methods used 2-D representation. The
same 2-D cross section of the critical element of the
dam was used in both analyses.

(4) Model configuration - the composite finite
element method uses discrete finite elements to model
the dam and a block of the foundation, and added
mass to represent the hydrodynamic effects.
Dynamic response is obtained by eigen solution of
the stiffness and mass matrices. This type of equiva-
lent mass system model is discussed in para-
graph 8-1d(3). Chopra’s simplified method uses a
“standardized model” as discussed in para-
graph 8-1d(1). With a “standardized model,”
dynamic loads are characterized by equivalent static
load so that the stresses can be determined by either
simple beam bending theory or by applying the equi-
valent static load to a finite element model of the
dam fixed at the base. Appendix C utilized the latter
method to determine the stresses because it provides
a more realistic distribution of stress.

(a) Although the “standardized model” accounts
for the foundation effects by increasing the funda-
mental period and the damping factor, its use of a
simplified standard mode shape, based solely on
horizontal translations relative to the fixed base, only
approximates the 2-D deformations within the dam in
response to the inertial effects of the ground motion.
For example, the rigid body translation and rotational
effect of the dam on its flexible foundation are not
incorporated in the simplified approach. Therefore,
the stress pattern produced by the two different analy-
sis methods can be quite different at some locations
in the dam.

(b) Another difference that can be considered as
a part of the model configuration is the method used
to combine the modal responses. In the composite
finite element method the maximum modal responses
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were combined by the Ten Percent Method (TPM)
discussed in paragraph 7-7, where the modal
responses for Chopra’s simplified method were com-
bined by square root of the sum of the squares
method (SRSS). The TPM gives some additional
accounting for modes of nearly the same frequency,
and thus produces greater combined response.

b. Comparing common parameters.The follow-
ing table compares the values of the parameters com-
mon to both methods of analysis:

Table of Common Parameters - MCE Normal Pool
Load Case

Parameter
Chopra’s Simplified
Method

Composite Finite
Element Method

T1

Rr

Rw

Rf

T̃1

β
S̃a

0.443 sec
1.100
0.85
1.190
0.585 sec

12.33%
22.37 ft/sec2

0.388 sec
1.075
1.00
1.336
0.558 sec

11.34%
22.26 ft/sec2

c. Method for comparing results.To gain an
understanding of the causes of the difference in the
dynamic stress response as produced by the two
analysis methods, several parameters will be adjusted
to determine to what extent they contribute to the
difference in stress response.

(1) The composite finite element analysis repre-
sents the more refined of the two analysis methods
since its attributes and their associated parameters
more closely represent the design conditions of the
example problem. To determine how refinement of
these parameters contributed to the difference in
response, they will be set to the same value as was
used in the simplified analysis. Adjustment of
parameters is easy because of the flexible attribute
capabilities of the composite finite element method as
discussed in paragraph 8-2c(1).

(2) It is more difficult to adjust parameters in
Chopra’s simplified method because this method has
primarily fixed attributes. However, one adjustment
that is possible consists of placing the equivalent
lateral static load on the same composite dam-
foundation finite element model as was used in the
more refined composite finite element analysis
method. This will produce a more realistic stress
pattern, particularly near the dam foundation interface
because it allows for deformation of the foundation
and associated redistribution of stresses from that of
the fixed condition of the dam base as described in
Appendix C.

(3) To help evaluate the difference in response
of the two methods, a single parameter will be
adjusted and an analysis made to determine it’s effect
on the stresses. A description of the adjustment of
parameters follows. Note that Analysis #1 is the
most refined analysis progressing sequentially to
Analysis #6 which is the least refined analysis.

ANALYSIS #1: The composite finite element-
equivalent mass system analysis as presented in this
appendix with no modifications.

ANALYSIS #2: Analysis #1 modified by delet-
ing the vertical component of ground motion.

ANALYSIS #3: Analysis #2 modified by using
SRSS to combine the maximum modal responses.

ANALYSIS #4: Analysis #3 modified by using
a 12.33 percent effective damping factor.

ANALYSIS #5: Chopra’s simplified method as
presented in Appendix C, but the stresses are deter-
mined by applying the equivalent static load on a
composite finite element model of the dam-foundation
as discussed above in paragraph D-16c(2).

ANALYSIS #6: Chopra’s simplified method as
presented in Appendix C with no modifications.
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Upstream Face

Critical Tensile Stress (psi)

Composite Finite Element Method Chopra’s Method

Node No.
Analysis
#1

Analysis
#2

Analysis
#3

Analysis
#4

Analysis
#5

Analysis
#6

143
129
115
108
101
94
87
80
73
66
56

76
333
317
342
379
395
418
436
436
580
449

72
315
293
312
343
354
371
385
385
535
428

71
313
291
310
341
353
370
385
385
534
428

68
302
279
297
326
336
351
363
360
500
404

196
262
198
186
205
206
210
218
219
316
285

196
262
198
187
205
204
205
224
281
494
247
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MCE Normal Pool Load Case:
Critical Tensile Stresses Normal to the Lift Joints at the Downstream Face

Critical Tensile Stress (psi)

Composite Finite Element Method Chopra’s Method

Node No.
Analysis
#1

Analysis
#2

Analysis
#3

Analysis
#4

Analysis
#5

Analysis
#6

149
135
121
114
107
100
93
86
79
72
62

44
513
277
345
415
455
466
440
364
321
134

42
493
265
330
398
440
453
431
357
311
125

41
490
264
329
398
439
453
431
357
311
125

40
474
255
319
385
425
437
414
340
294
115

94
527
239
305
378
422
430
395
310
253
93

94
527
239
305
377
418
427
398
307
188
44

MCE Normal Pool Load Case:
Critical Principal Tensile Stresses at the Downstream Face

Critical Tensile Stress (psi)

Composite Finite Element Method Chopra’s Method

Node No.
Analysis
#1

Analysis
#2

Analysis
#3

Analysis
#4

Analysis
#5

Analysis
#6

149
135
121
114
107
100
93
86
79
72
62

44
513
406
504
602
677
744
692
564
481
311

42
493
455
482
579
655
725
679
554
463
290

41
490
453
482
579
655
724
679
554
463
290

40
474
374
466
560
633
699
652
527
437
270

98
607
395
493
593
657
702
637
493
385
234

98
607
396
493
593
656
701
643
498
305
67
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